skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jha, Ratneshwar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In response to the growing global demand for both energy and a clean environment, there has been an unprecedented rise in the utilization of renewable energy. Wind energy plays a crucial role in striving for carbon neutrality due to its eco-friendly characteristics. Despite its significance, wind energy infrastructure is susceptible to damage from various factors including wind or sea waves, rapidly changing environmental conditions, delamination, crack formation, and structural deterioration over time. This research focuses on investigating non-destructive testing (NDT) of wind turbine blades (WTBs) using approaches based on the vibration of the structures. To this end, WTBs are first made from glass fiber-reinforcement polymer (GFRP) using composite molding techniques, and then a short pulse is generated in the structure by a piezoelectric actuator made from lead zirconate titanate (PZT-5H) to generate guided waves. A numerical approach is presented based on solving the elastic time-harmonic wave equations, and a laser Doppler vibrometer (LDV) is utilized to collect the vibrational data in a remote manner, thereby facilitating the crack detection of WTBs. Subsequently, the wave propagation characteristics of intact and damaged structures are analyzed using the Hilbert–Huang transformation (HHT) and fast Fourier transformation (FFT). The results reveal noteworthy distinctions in damaged structures, where the frequency domain exhibits additional components beyond those identified by FFT, and the time domain displays irregularities in proximity to the crack region, as detected by HHT. The results suggest a feasible approach to detecting potential cracks of WTBs in a non-contact and reliable way. 
    more » « less
  2. Structures with specific graded geometries or properties can cause spatial separation and local field enhancement of wave energy. This phenomenon is called rainbow trapping, which manifests itself as stopping the propagation of waves at different locations according to their frequencies. In acoustics, most research on rainbow trapping has focused on wave propagation in one dimension. This research examined the elastic wave trapping performance of a two-dimensional (2D) axisymmetric grooved phononic crystal plate structure. The performance of the proposed structure is validated using numerical simulations based on finite element analysis and experimental measurements using a laser Doppler vibrometer. It is found that rainbow trapping within the frequency range of 165–205 kHz is achieved, where elastic waves are trapped at different radial distances in the plate. The results demonstrate that the proposed design is capable of effectively capturing elastic waves across a broad frequency range of interest. This concept could be useful in applications such as filtering and energy harvesting by concentrating wave energy at different locations in the structure. 
    more » « less
  3. null (Ed.)
    A closed-loop control algorithm for the reduction of turbulent flow separation over NACA 0015 airfoil equipped with leading-edge synthetic jet actuators (SJAs) is presented. A system identification approach based on Nonlinear Auto-Regressive Moving Average with eXogenous inputs (NARMAX) technique was used to predict nonlinear dynamics of the fluid flow and for the design of the controller system. Numerical simulations based on URANS equations are performed at Reynolds number of 106 for various airfoil incidences with and without closed-loop control. The NARMAX model for flow over an airfoil is based on the static pressure data, and the synthetic jet actuator is developed using an incompressible flow model. The corresponding NARMAX identification model developed for the pressure data is nonlinear; therefore, the describing function technique is used to linearize the system within its frequency range. Low-pass filtering is used to obtain quasi-linear state values, which assist in the application of linear control techniques. The reference signal signifies the condition of a fully re-attached flow, and it is determined based on the linearization of the original signal during open-loop control. The controller design follows the standard proportional-integral (PI) technique for the single-input single-output system. The resulting closed-loop response tracks the reference value and leads to significant improvements in the transient response over the open-loop system. The NARMAX controller enhances the lift coefficient from 0.787 for the uncontrolled case to 1.315 for the controlled case with an increase of 67.1%. 
    more » « less